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An e lec t r ic  analog s imulat ion method is desc r ibed  for hea t -  or  m a s s - t r a n s f e r  based  on the 
decomposi t ion  of the t r a n s p o r t  equation and the s imulat ion of a s y s t e m  of l o c a l l y - o n e - d i -  
mens iona l  equations by r e s i s t o r s .  

Ill. 
Analog electric network simulators have been widely used to solve problems of mathematical physics 

We consider the locally-one-dimensional method [2, 3] of simulating parabolic equations of multi- 
dimensional  p rob l em s  because  of i ts  un iversa l i ty  and s impl ic i ty .  

As shown in [2-4] the solution of the equation 
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can be obtained by solving in success ion  the p one-dimensional  equations 
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in the t ime  in te rva ls  
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Fo k+ 7 -  4 F6~4 Fo k+-r .  (3) 

I t  is convenient  to solve Eq. (2) by impl ic i t  uni form di f ference  schemes  {2,3] 

(Ok+ " k+ ~ (4) 
- F  _ _  0 ~+ 6 F o  - -  A ~ 0  o = O. 

The overa l l  approx imat ion  e r r o r  of a d i f ference  scheme  is 
P 

Scheme (4) can be rea l i zed  on an  e lec t r ic  s imula tor  consis t ing of r e s i s t o r s  (Fig. 1). 

The domain of definit ion of Eq. (1) is rep laced  by a rec tangu la r  network region in which the values  of 
O k + l / p  a r e  de te rmined  success ive ly  a t  nodal points lying on s t ra igh t  l ines  pa ra l l e l  to ~l. In accordance  
with the usnal methods of s imulat ing one-dimensional  p r o b l e m s  [1, 5] the points of in te rsec t ion  of these  
s t ra igh t  l ines with the boundar ies  of the s imula tor  a r e  mainta ined a t  potent ia ls  E S or supplied cu r r en t s  IS 
corresponding to the boundary conditions at the given instant, and the free ends of the resistors RFo are 
maintained at potentials E 0 corresponding to the initial distribution of the values of 0 at the given points. 
By continuing this operation as many times as there are straight lines parallel to Ni intersecting the region 
under study we determine 0k+I/P. We then determine 0k+2/P by using as initial conditions the values of 
O k+i/p at the corresponding points and the conditions at the points where straight lines parallel to ~72 
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Fig. I. Circuit diagram of simulator. 
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i n t e r s ec t  the boundaries etc.  The values of 8 for  integral  steps in Fo form 
the solution of Eq. (1). Since implici t  scheme (4) is used in the simtflation 
the choice of 6Fo is a r b i t r a r y  and is de termined solely by the requi red  ac -  
curacy  of the solution [1]. 

Thus r a the r  complicated problems can be solved on a s imulator  con-  
s is t ing of severa l  tens of var iable  r e s i s t o r s .  This is de termined  by the pos -  
s ibi l i t ies  of a d i sc re t e  one-dimensional  e lec t r ic  network s imulator  [1]. To 
s imulate  l inear  mult idimensional  hea t -  and m a s s - t r a n s f e r  problems s imul tane-  
ously a two- layer  net of r e s i s t o r s  of the type used in [6] can be employed. 

As an example a two-dimensional  heat-conduction problem previous ly  
solved on a computer  by the method of fractional  steps [4] was simulated:  

dO 020 + 0~0 
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The boundary conditions for the problem (Fig. 2) a r e  the following: 

Fig. 2. Schematic d ia -  01Fo=0 = 1; 0 < F o ~ 7 . 4 2  I0-*; 
do . dO 1 -- g ram of body simulated.  ~ 81= Bin 0181; &%,83 Bill0]%; 

do 
&h s~ = Bi204sz; d o  = Bi~0[s : 

0% Is4 4 

O0 a0 85 On1 s( =Bi*eIs;; ~ = 0 ;  

__ a0, =Bi  2018; 
0111 82 2 

Bix = 1.2; Bin-- 0.366; Bill = 1.491; Bi, = 0.187. 

The loca l ly-one-dimenstona!  scheme cor responding  to the prob lem descr ibed  by (5) is 
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(7) 
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(8b) 

We assume  as  in [4]: 

/h 2 -  ha-= 1; h l = h  a = h = 0 . 0 3 5 1 ;  
2 

6Fo = 1.855.10-ll. 

With this choice of mesh  s ize  the boundary nodes of the s imula tor  do not cor respond to the boundaries of the 
body. The boundary conditions [4] a r e  used to de te rmine  the values of 0 at  the boundary nodes. 

Equations (8a) and (8b) were  s imulated at  each instant  k on the same KMS-6 network of var iable  r e -  
s i s to r s  by using the voltage source  and measur ing  equipment of the EGDA 9 /60  in tegrator .  The values of 
E k + l / 2  were  de te rmined  f i r s t  by success ive ly  simulat ing the horizontal  a r r a y s  of nodes using the initial 
conditions (E 0) and the boundary conditions for  Vi = const  (Eq. (8a)). Then Eq. (8b) was simulated along 
ver t ica l  l ines using as initial conditions the values of E k + l / 2  at  the corresponding nodes and the boundary 
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conditions for  ~2 = const .  The values  of E k + 1 were  then used as  initial conditions for  the next ha l f - s t ep  
etc.  The solution obtained ag reed  with the computer  solution [4] to within 1%. 

E lec t r i c  s imulat ion by a network of va r i ab le  r e s i s t o r s  using the  method of f ract ional  s teps is un iv e r -  
sal  and can be used to inves t igate  many  p rob l ems  leading to hyperbol ic ,  b iharmonic ,  and other  equations 
in addit ion to hea t -  and m a s s - t r a n s f e r  p r o b l e m s .  

In spite of the fact  that a two-dimensional  p rob l em can be solved on the s imula to r  desc r ibed  in many  
fewer  s teps  than on the EI-1 stat ic e lec t r ic  in tegra tor ,  the s imula to r  should be automated  to speed up the 
p r o c e s s .  The EI-2  ins t rument  developed a t  Kazakh State Univers i ty  is the f i r s t  step in this d i rec t ion  [7]. 
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NOTATION 

is the dimensionless temperature; 
is the Fourier number; 
is the dimensionless coordinate; 
is the characteristic dimension of the body; 
is the dimensionless velocity of the medium; 
is the dimensionless thermal conductivity of the medium; 
Is the characteristic thermal conductivity; 
is the size of the step in Fo; 
is the step in the coordinate ~ v ; 
is the difference approximation for the v-th operato} in Eq. (1); 
Is the Biot number; 

Is the electric potential; 

is the electrical resistance; 

is  the por t ion  of the su r face  of the body; 
a r e  the values  of spat ial  va r i ab l e s ;  
is the ins tant  of t ime.  
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